3.3.9 \(\int \tanh ^4(x) \sqrt {a+b \tanh ^2(x)} \, dx\) [209]

3.3.9.1 Optimal result
3.3.9.2 Mathematica [C] (verified)
3.3.9.3 Rubi [A] (verified)
3.3.9.4 Maple [B] (verified)
3.3.9.5 Fricas [B] (verification not implemented)
3.3.9.6 Sympy [F]
3.3.9.7 Maxima [F]
3.3.9.8 Giac [B] (verification not implemented)
3.3.9.9 Mupad [F(-1)]

3.3.9.1 Optimal result

Integrand size = 17, antiderivative size = 121 \[ \int \tanh ^4(x) \sqrt {a+b \tanh ^2(x)} \, dx=\frac {\left (a^2-4 a b-8 b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{8 b^{3/2}}+\sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )-\frac {(a+4 b) \tanh (x) \sqrt {a+b \tanh ^2(x)}}{8 b}-\frac {1}{4} \tanh ^3(x) \sqrt {a+b \tanh ^2(x)} \]

output
1/8*(a^2-4*a*b-8*b^2)*arctanh(b^(1/2)*tanh(x)/(a+b*tanh(x)^2)^(1/2))/b^(3/ 
2)+arctanh((a+b)^(1/2)*tanh(x)/(a+b*tanh(x)^2)^(1/2))*(a+b)^(1/2)-1/8*(a+4 
*b)*(a+b*tanh(x)^2)^(1/2)*tanh(x)/b-1/4*(a+b*tanh(x)^2)^(1/2)*tanh(x)^3
 
3.3.9.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 6.21 (sec) , antiderivative size = 580, normalized size of antiderivative = 4.79 \[ \int \tanh ^4(x) \sqrt {a+b \tanh ^2(x)} \, dx=\frac {-\frac {b \left (a^2-4 b^2\right ) \sqrt {\frac {a-b+(a+b) \cosh (2 x)}{1+\cosh (2 x)}} \sqrt {-\frac {a \coth ^2(x)}{b}} \sqrt {-\frac {a (1+\cosh (2 x)) \text {csch}^2(x)}{b}} \sqrt {\frac {(a-b+(a+b) \cosh (2 x)) \text {csch}^2(x)}{b}} \text {csch}(2 x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a-b+(a+b) \cosh (2 x)) \text {csch}^2(x)}{b}}}{\sqrt {2}}\right ),1\right ) \sinh ^4(x)}{a (a-b+(a+b) \cosh (2 x))}-\frac {4 i b \left (4 a b+4 b^2\right ) \sqrt {1+\cosh (2 x)} \sqrt {\frac {a-b+(a+b) \cosh (2 x)}{1+\cosh (2 x)}} \left (-\frac {i \sqrt {-\frac {a \coth ^2(x)}{b}} \sqrt {-\frac {a (1+\cosh (2 x)) \text {csch}^2(x)}{b}} \sqrt {\frac {(a-b+(a+b) \cosh (2 x)) \text {csch}^2(x)}{b}} \text {csch}(2 x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a-b+(a+b) \cosh (2 x)) \text {csch}^2(x)}{b}}}{\sqrt {2}}\right ),1\right ) \sinh ^4(x)}{4 a \sqrt {1+\cosh (2 x)} \sqrt {a-b+(a+b) \cosh (2 x)}}+\frac {i \sqrt {-\frac {a \coth ^2(x)}{b}} \sqrt {-\frac {a (1+\cosh (2 x)) \text {csch}^2(x)}{b}} \sqrt {\frac {(a-b+(a+b) \cosh (2 x)) \text {csch}^2(x)}{b}} \text {csch}(2 x) \operatorname {EllipticPi}\left (\frac {b}{a+b},\arcsin \left (\frac {\sqrt {\frac {(a-b+(a+b) \cosh (2 x)) \text {csch}^2(x)}{b}}}{\sqrt {2}}\right ),1\right ) \sinh ^4(x)}{2 (a+b) \sqrt {1+\cosh (2 x)} \sqrt {a-b+(a+b) \cosh (2 x)}}\right )}{\sqrt {a-b+(a+b) \cosh (2 x)}}}{4 b}+\sqrt {\frac {a-b+a \cosh (2 x)+b \cosh (2 x)}{1+\cosh (2 x)}} \left (\frac {\text {sech}(x) (-a \sinh (x)-6 b \sinh (x))}{8 b}+\frac {1}{4} \text {sech}^2(x) \tanh (x)\right ) \]

input
Integrate[Tanh[x]^4*Sqrt[a + b*Tanh[x]^2],x]
 
output
(-((b*(a^2 - 4*b^2)*Sqrt[(a - b + (a + b)*Cosh[2*x])/(1 + Cosh[2*x])]*Sqrt 
[-((a*Coth[x]^2)/b)]*Sqrt[-((a*(1 + Cosh[2*x])*Csch[x]^2)/b)]*Sqrt[((a - b 
 + (a + b)*Cosh[2*x])*Csch[x]^2)/b]*Csch[2*x]*EllipticF[ArcSin[Sqrt[((a - 
b + (a + b)*Cosh[2*x])*Csch[x]^2)/b]/Sqrt[2]], 1]*Sinh[x]^4)/(a*(a - b + ( 
a + b)*Cosh[2*x]))) - ((4*I)*b*(4*a*b + 4*b^2)*Sqrt[1 + Cosh[2*x]]*Sqrt[(a 
 - b + (a + b)*Cosh[2*x])/(1 + Cosh[2*x])]*(((-1/4*I)*Sqrt[-((a*Coth[x]^2) 
/b)]*Sqrt[-((a*(1 + Cosh[2*x])*Csch[x]^2)/b)]*Sqrt[((a - b + (a + b)*Cosh[ 
2*x])*Csch[x]^2)/b]*Csch[2*x]*EllipticF[ArcSin[Sqrt[((a - b + (a + b)*Cosh 
[2*x])*Csch[x]^2)/b]/Sqrt[2]], 1]*Sinh[x]^4)/(a*Sqrt[1 + Cosh[2*x]]*Sqrt[a 
 - b + (a + b)*Cosh[2*x]]) + ((I/2)*Sqrt[-((a*Coth[x]^2)/b)]*Sqrt[-((a*(1 
+ Cosh[2*x])*Csch[x]^2)/b)]*Sqrt[((a - b + (a + b)*Cosh[2*x])*Csch[x]^2)/b 
]*Csch[2*x]*EllipticPi[b/(a + b), ArcSin[Sqrt[((a - b + (a + b)*Cosh[2*x]) 
*Csch[x]^2)/b]/Sqrt[2]], 1]*Sinh[x]^4)/((a + b)*Sqrt[1 + Cosh[2*x]]*Sqrt[a 
 - b + (a + b)*Cosh[2*x]])))/Sqrt[a - b + (a + b)*Cosh[2*x]])/(4*b) + Sqrt 
[(a - b + a*Cosh[2*x] + b*Cosh[2*x])/(1 + Cosh[2*x])]*((Sech[x]*(-(a*Sinh[ 
x]) - 6*b*Sinh[x]))/(8*b) + (Sech[x]^2*Tanh[x])/4)
 
3.3.9.3 Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.10, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.529, Rules used = {3042, 4153, 380, 444, 398, 224, 219, 291, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tanh ^4(x) \sqrt {a+b \tanh ^2(x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \tan (i x)^4 \sqrt {a-b \tan (i x)^2}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle \int \frac {\tanh ^4(x) \sqrt {a+b \tanh ^2(x)}}{1-\tanh ^2(x)}d\tanh (x)\)

\(\Big \downarrow \) 380

\(\displaystyle \frac {1}{4} \int \frac {\tanh ^2(x) \left ((a+4 b) \tanh ^2(x)+3 a\right )}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^2(x)+a}}d\tanh (x)-\frac {1}{4} \tanh ^3(x) \sqrt {a+b \tanh ^2(x)}\)

\(\Big \downarrow \) 444

\(\displaystyle \frac {1}{4} \left (\frac {\int \frac {a (a+4 b)-\left (a^2-4 b a-8 b^2\right ) \tanh ^2(x)}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^2(x)+a}}d\tanh (x)}{2 b}-\frac {(a+4 b) \tanh (x) \sqrt {a+b \tanh ^2(x)}}{2 b}\right )-\frac {1}{4} \tanh ^3(x) \sqrt {a+b \tanh ^2(x)}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {1}{4} \left (\frac {\left (a^2-4 a b-8 b^2\right ) \int \frac {1}{\sqrt {b \tanh ^2(x)+a}}d\tanh (x)+8 b (a+b) \int \frac {1}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^2(x)+a}}d\tanh (x)}{2 b}-\frac {(a+4 b) \tanh (x) \sqrt {a+b \tanh ^2(x)}}{2 b}\right )-\frac {1}{4} \tanh ^3(x) \sqrt {a+b \tanh ^2(x)}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {1}{4} \left (\frac {\left (a^2-4 a b-8 b^2\right ) \int \frac {1}{1-\frac {b \tanh ^2(x)}{b \tanh ^2(x)+a}}d\frac {\tanh (x)}{\sqrt {b \tanh ^2(x)+a}}+8 b (a+b) \int \frac {1}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^2(x)+a}}d\tanh (x)}{2 b}-\frac {(a+4 b) \tanh (x) \sqrt {a+b \tanh ^2(x)}}{2 b}\right )-\frac {1}{4} \tanh ^3(x) \sqrt {a+b \tanh ^2(x)}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{4} \left (\frac {8 b (a+b) \int \frac {1}{\left (1-\tanh ^2(x)\right ) \sqrt {b \tanh ^2(x)+a}}d\tanh (x)+\frac {\left (a^2-4 a b-8 b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{\sqrt {b}}}{2 b}-\frac {(a+4 b) \tanh (x) \sqrt {a+b \tanh ^2(x)}}{2 b}\right )-\frac {1}{4} \tanh ^3(x) \sqrt {a+b \tanh ^2(x)}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {1}{4} \left (\frac {8 b (a+b) \int \frac {1}{1-\frac {(a+b) \tanh ^2(x)}{b \tanh ^2(x)+a}}d\frac {\tanh (x)}{\sqrt {b \tanh ^2(x)+a}}+\frac {\left (a^2-4 a b-8 b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{\sqrt {b}}}{2 b}-\frac {(a+4 b) \tanh (x) \sqrt {a+b \tanh ^2(x)}}{2 b}\right )-\frac {1}{4} \tanh ^3(x) \sqrt {a+b \tanh ^2(x)}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{4} \left (\frac {\frac {\left (a^2-4 a b-8 b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{\sqrt {b}}+8 b \sqrt {a+b} \text {arctanh}\left (\frac {\sqrt {a+b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{2 b}-\frac {(a+4 b) \tanh (x) \sqrt {a+b \tanh ^2(x)}}{2 b}\right )-\frac {1}{4} \tanh ^3(x) \sqrt {a+b \tanh ^2(x)}\)

input
Int[Tanh[x]^4*Sqrt[a + b*Tanh[x]^2],x]
 
output
-1/4*(Tanh[x]^3*Sqrt[a + b*Tanh[x]^2]) + ((((a^2 - 4*a*b - 8*b^2)*ArcTanh[ 
(Sqrt[b]*Tanh[x])/Sqrt[a + b*Tanh[x]^2]])/Sqrt[b] + 8*b*Sqrt[a + b]*ArcTan 
h[(Sqrt[a + b]*Tanh[x])/Sqrt[a + b*Tanh[x]^2]])/(2*b) - ((a + 4*b)*Tanh[x] 
*Sqrt[a + b*Tanh[x]^2])/(2*b))/4
 

3.3.9.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 380
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(b* 
(m + 2*(p + q) + 1))), x] - Simp[e^2/(b*(m + 2*(p + q) + 1))   Int[(e*x)^(m 
 - 2)*(a + b*x^2)^p*(c + d*x^2)^(q - 1)*Simp[a*c*(m - 1) + (a*d*(m - 1) - 2 
*q*(b*c - a*d))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c 
- a*d, 0] && GtQ[q, 0] && GtQ[m, 1] && IntBinomialQ[a, b, c, d, e, m, 2, p, 
 q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 444
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q 
_.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[f*g*(g*x)^(m - 1)*(a + b*x^2)^ 
(p + 1)*((c + d*x^2)^(q + 1)/(b*d*(m + 2*(p + q + 1) + 1))), x] - Simp[g^2/ 
(b*d*(m + 2*(p + q + 1) + 1))   Int[(g*x)^(m - 2)*(a + b*x^2)^p*(c + d*x^2) 
^q*Simp[a*f*c*(m - 1) + (a*f*d*(m + 2*q + 1) + b*(f*c*(m + 2*p + 1) - e*d*( 
m + 2*(p + q + 1) + 1)))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, 
q}, x] && GtQ[m, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
3.3.9.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(336\) vs. \(2(99)=198\).

Time = 0.10 (sec) , antiderivative size = 337, normalized size of antiderivative = 2.79

method result size
derivativedivides \(-\frac {\sqrt {a +b \tanh \left (x \right )^{2}}\, \tanh \left (x \right )}{2}-\frac {a \ln \left (\sqrt {b}\, \tanh \left (x \right )+\sqrt {a +b \tanh \left (x \right )^{2}}\right )}{2 \sqrt {b}}-\frac {\tanh \left (x \right ) \left (a +b \tanh \left (x \right )^{2}\right )^{\frac {3}{2}}}{4 b}+\frac {a \tanh \left (x \right ) \sqrt {a +b \tanh \left (x \right )^{2}}}{8 b}+\frac {a^{2} \ln \left (\sqrt {b}\, \tanh \left (x \right )+\sqrt {a +b \tanh \left (x \right )^{2}}\right )}{8 b^{\frac {3}{2}}}-\frac {\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{2}-\frac {\sqrt {b}\, \ln \left (\frac {b \left (\tanh \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}\right )}{2}+\frac {\sqrt {a +b}\, \ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )}{2}+\frac {\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{2}-\frac {\sqrt {b}\, \ln \left (\frac {b \left (1+\tanh \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}\right )}{2}-\frac {\sqrt {a +b}\, \ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )}{2}\) \(337\)
default \(-\frac {\sqrt {a +b \tanh \left (x \right )^{2}}\, \tanh \left (x \right )}{2}-\frac {a \ln \left (\sqrt {b}\, \tanh \left (x \right )+\sqrt {a +b \tanh \left (x \right )^{2}}\right )}{2 \sqrt {b}}-\frac {\tanh \left (x \right ) \left (a +b \tanh \left (x \right )^{2}\right )^{\frac {3}{2}}}{4 b}+\frac {a \tanh \left (x \right ) \sqrt {a +b \tanh \left (x \right )^{2}}}{8 b}+\frac {a^{2} \ln \left (\sqrt {b}\, \tanh \left (x \right )+\sqrt {a +b \tanh \left (x \right )^{2}}\right )}{8 b^{\frac {3}{2}}}-\frac {\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{2}-\frac {\sqrt {b}\, \ln \left (\frac {b \left (\tanh \left (x \right )-1\right )+b}{\sqrt {b}}+\sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}\right )}{2}+\frac {\sqrt {a +b}\, \ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )}{2}+\frac {\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{2}-\frac {\sqrt {b}\, \ln \left (\frac {b \left (1+\tanh \left (x \right )\right )-b}{\sqrt {b}}+\sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}\right )}{2}-\frac {\sqrt {a +b}\, \ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )}{2}\) \(337\)

input
int((a+b*tanh(x)^2)^(1/2)*tanh(x)^4,x,method=_RETURNVERBOSE)
 
output
-1/2*(a+b*tanh(x)^2)^(1/2)*tanh(x)-1/2*a/b^(1/2)*ln(b^(1/2)*tanh(x)+(a+b*t 
anh(x)^2)^(1/2))-1/4*tanh(x)*(a+b*tanh(x)^2)^(3/2)/b+1/8*a/b*tanh(x)*(a+b* 
tanh(x)^2)^(1/2)+1/8*a^2/b^(3/2)*ln(b^(1/2)*tanh(x)+(a+b*tanh(x)^2)^(1/2)) 
-1/2*(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2)-1/2*b^(1/2)*ln((b*(tanh(x 
)-1)+b)/b^(1/2)+(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2))+1/2*(a+b)^(1/ 
2)*ln((2*a+2*b+2*b*(tanh(x)-1)+2*(a+b)^(1/2)*(b*(tanh(x)-1)^2+2*b*(tanh(x) 
-1)+a+b)^(1/2))/(tanh(x)-1))+1/2*(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/ 
2)-1/2*b^(1/2)*ln((b*(1+tanh(x))-b)/b^(1/2)+(b*(1+tanh(x))^2-2*b*(1+tanh(x 
))+a+b)^(1/2))-1/2*(a+b)^(1/2)*ln((2*a+2*b-2*b*(1+tanh(x))+2*(a+b)^(1/2)*( 
b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2))/(1+tanh(x)))
 
3.3.9.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2030 vs. \(2 (99) = 198\).

Time = 0.58 (sec) , antiderivative size = 9360, normalized size of antiderivative = 77.36 \[ \int \tanh ^4(x) \sqrt {a+b \tanh ^2(x)} \, dx=\text {Too large to display} \]

input
integrate((a+b*tanh(x)^2)^(1/2)*tanh(x)^4,x, algorithm="fricas")
 
output
Too large to include
 
3.3.9.6 Sympy [F]

\[ \int \tanh ^4(x) \sqrt {a+b \tanh ^2(x)} \, dx=\int \sqrt {a + b \tanh ^{2}{\left (x \right )}} \tanh ^{4}{\left (x \right )}\, dx \]

input
integrate((a+b*tanh(x)**2)**(1/2)*tanh(x)**4,x)
 
output
Integral(sqrt(a + b*tanh(x)**2)*tanh(x)**4, x)
 
3.3.9.7 Maxima [F]

\[ \int \tanh ^4(x) \sqrt {a+b \tanh ^2(x)} \, dx=\int { \sqrt {b \tanh \left (x\right )^{2} + a} \tanh \left (x\right )^{4} \,d x } \]

input
integrate((a+b*tanh(x)^2)^(1/2)*tanh(x)^4,x, algorithm="maxima")
 
output
integrate(sqrt(b*tanh(x)^2 + a)*tanh(x)^4, x)
 
3.3.9.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 938 vs. \(2 (99) = 198\).

Time = 0.99 (sec) , antiderivative size = 938, normalized size of antiderivative = 7.75 \[ \int \tanh ^4(x) \sqrt {a+b \tanh ^2(x)} \, dx=\text {Too large to display} \]

input
integrate((a+b*tanh(x)^2)^(1/2)*tanh(x)^4,x, algorithm="giac")
 
output
-1/2*sqrt(a + b)*log(abs(-(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x 
) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))*(a + b) - sqrt(a + b)*(a - b))) - 
1/2*sqrt(a + b)*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) 
+ 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) + sqrt(a + b))) + 1/2*sqrt(a + b)*log 
(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b 
*e^(2*x) + a + b) - sqrt(a + b))) + 1/4*(a^2 - 4*a*b - 8*b^2)*arctan(-1/2* 
(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2 
*x) + a + b) + sqrt(a + b))/sqrt(-b))/(sqrt(-b)*b) - 1/2*((a^2 + 12*a*b + 
16*b^2)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 
2*b*e^(2*x) + a + b))^7 + (7*a^2 + 52*a*b + 16*b^2)*(sqrt(a + b)*e^(2*x) - 
 sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^6*sqrt(a 
 + b) + (21*a^3 + 109*a^2*b + 28*a*b^2 - 48*b^3)*(sqrt(a + b)*e^(2*x) - sq 
rt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^5 + (35*a^3 
 + 115*a^2*b - 156*a*b^2 - 176*b^3)*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) 
+ b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^4*sqrt(a + b) + (35*a^4 
+ 130*a^3*b - 317*a^2*b^2 - 156*a*b^3 + 304*b^4)*(sqrt(a + b)*e^(2*x) - sq 
rt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^3 + (21*a^4 
 + 94*a^3*b - 379*a^2*b^2 + 476*a*b^3 + 48*b^4)*(sqrt(a + b)*e^(2*x) - sqr 
t(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^2*sqrt(a + b 
) + (7*a^5 + 53*a^4*b - 135*a^3*b^2 + 271*a^2*b^3 - 140*a*b^4 - 272*b^5...
 
3.3.9.9 Mupad [F(-1)]

Timed out. \[ \int \tanh ^4(x) \sqrt {a+b \tanh ^2(x)} \, dx=\int {\mathrm {tanh}\left (x\right )}^4\,\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a} \,d x \]

input
int(tanh(x)^4*(a + b*tanh(x)^2)^(1/2),x)
 
output
int(tanh(x)^4*(a + b*tanh(x)^2)^(1/2), x)